GDPD-505H

手持式局部放电检测仪

产品操作手册

武汉国电西高电气有限公司

尊敬的用户:

感谢您购买本公司 GDPD-505H 手持式局部放电巡检仪。在您初次使用 该产品前,请您详细地阅读本使用说明书,将可帮助您熟练地使用本仪器。

我们的宗旨是不断地改进和完善公司的产品,如果您有不清楚之处,请与 公司售后服务部联络,我们会尽快给您答复。

- 使用产品时,请按说明书规范操作
- 未经允许,请勿开启仪器,这会影响产品的保修。自行拆卸厂方概不负责。
- 存放保管本仪器时,应注意环境温度和湿度,放在干燥通风的地方为宜,
 要防尘、防潮、防震、防酸碱及腐蚀气体。
- 仪器运输时应避免雨水浸蚀,严防碰撞和坠落。

本手册内容如有更改, 恕不通告。没有武汉国电西高电气有限公司的书面 许可, 本手册任何部分都不许以任何(电子的或机械的)形式、方法或以任何 目的而进行传播。

<u> </u> ,	概 述	3
`\	仪器功能特点	4
三、	技术指标	6
四、	主机介绍	8
五、	试验方法及接线	11
六、	软件功能简介	16
七、	常见问题处理	25

Ξ

一、概 述

该手持式局部放电巡检仪适用于变压器等高压电气设备的局部放电 检测和定位。

该手持式局部放电巡检仪包括检测主机、局放检测软件、高频电流 互感器(HFCT)、校准脉冲发生器、150KHz 接触式超声波传感器、同 步信号转换器及连接线组成

图1系统组成图

- 二、仪器功能特点
- 1、手持式设计,坚固耐用,使用方便

检测主机为手持式设计,壳体坚固可靠,选用 10.1 英寸高性能计算 机主板,系统内置 10AH 锂电池,无需提供外部供电可以工作长达 6 个 小时。

2、抗干扰能力较强,检测数据准确

利用数字滤波技术,可以有效地消除现场干扰,在强干扰环境下也能 实现局部放电测量。

3、高灵敏度的传感器,能够灵敏反映设备内部的局部放电状态

超声传感器采用目前最先进的技术,实际应用验证,可检测到微弱的放电信号,确保可以有效检测到高压设备内部的局部放电信号。

高频电流互感器使用高强度的铝合金构成,内部采用金属屏蔽,不仅 减少了外部磁场对传感器检测精度的影响。

4、安装简单方便

高频电流互感器为圆形或矩形开口式设计,便于卡装在不同接地线 上。

5、系统采用多通道数据采集

可同时对局部放电产生的电磁波、超声波等信号进行综合分析处理。 6、连接简单方便

系统采用统一的连接方式,传感器与主机之间选均采用 BNC 接口方式,便于使用。

7、软件功能强大

具有局部放电测量、分析,局部放电重复放电次数 n 的测量、分析, 抗固定干扰,抗动态干扰,自由选择椭圆、直线、正弦显示方式,窗口局

部进行详细测量、观察放电脉冲,试验电压、电流和局部放电同时测量, 两道自动定时保存实验数据,两通道手动或随时保存实验数据,随时存储 波形,重新显示、分析过去已保存的试验波形,增益范围每通道六档粗调, 每档随意细调,数字开窗技术、PRPS技术、可避免干扰对测量的影响, 相位开窗、单窗、双窗任选,360度内自由开窗,测量有效地抑制干扰脉 冲信号,并同时测量两个试品或一个试品的多个测量点的局部放电信号, 方便地分析局部放电信号的来源,内、外同步随意选择;

8、本软件局部放电显示结果符合 IEC60270 标准,可使用 pC 值以及 mV 值两种方式来显示。

三、技术指标

1、适用范围

具备对运行中的高压电气设备进行局放带电检测、定位的功能,适用 于变压器等高压电气设备的局放带电检测和定位。

- 2、产品技术规范和标准
 - IEC60270 《局部放电测量》
 - GB/T7354 《局部放电测量》
- 3、使用环境
 - 环境温度: -10℃~50℃
 - 相对湿度: ≤95%。
 - 海拔高度: ≤1000m
- 4、主机技术参数

测量通道: 2-4 个独立测量通道 采样速率: 每通道最大 250MHz 检测灵敏度: 1pC 测量范围: 1pC~10000pC 动态范围: 大于 80dB; 测量频带为 3dB 带宽: 10kHz~30MHz。 数字滤波器: 在 50kHz - 30MHz 范围内任意设置 电源: AC220V±10%; 频率 50Hz; 功率<50W

- 5、传感器技术参数
- a、高频电流互感器

检测频带	50kHz \sim 20MHz
信号传输方式	50Ω同轴电缆

- 检测灵敏度 10pC
- b、校准脉冲发生器:

标准脉冲电压档分为: 0.1V(10pC),0.5V(50pC),1.0V

(100pC) ,5.0V (500pC)

输出频率: 50Hz~1KHz(步进 50)

注入电容: 100pF

上升时间: <30ns

衰减时间: ≥100µs

输出内阻: <100Ω。

校准电荷量误差: < ±15%;

尺寸重量: 135×80×25,约275g

c、150KHz 接触式磁吸附超声波传感器

检测频率:中心频率 150KHz;

信号传输方式: 50Ω同轴电缆

有效灵敏度: 10pC(在5mm厚的钢板油箱中,一米范围纯油中测得) d、同步信号转换器

输入幅值范围: 20-250V;

输入频率范围: 40-300HZ;

信号输出范围: TTL 电平

信号传输方式: 50Ω同轴电缆

四、主机介绍

电源开关:当外部传感器如:超声波需要供电的传感器打开此电源开关。

充电口: 此充电口给局部放电检测仪内置锂电池充电。

接地旋钮:用于现场做试验时可靠的接地。

外同步旋钮:用于外同步电源信号的接入。

输入端口: CH1 电信号、CH2 电信号、CH3/CH4 电信号、CH3 光信号、CH4 光信号、同步信号输入

图 2 主机面板介绍

图 4 右侧面板介绍

图 5 仪器内部组成

图 6 同步信号转换器介绍

五、试验方法及接线

1、变压器局放试验说明

a、高频法(采用高频电流互感器)

①用同轴电缆将高频电流互感器 BNC 接口与与主机标有电信号的 BNC 接口连接。

(注:在此测量方法下无需外接电源,无需打开电源开关,只需要打开笔记本即可)。

图7高频电流互感器接线图

2校准

将方波发生器专用线穿过高频电流互感器,然后将高频电流互感器器 BNC接口与主机标有电信号的BNC接口连接。在方波输出端有三个颜色的端子分别为"白色"、"黑色"、"红色","白色""黑色"端子短接用于调试,"红色"和"黑色"端子用于校准脉冲。所以在脉冲校准试验时,只需要接"红色"和"黑色"端子即可。

(例:将方波发生器的档位调至100PC,那么在软件的界面上显示100pc,即为信号校准。具体使用方法见软件介绍)

图 8 校准试验图

高频互感器为开口式设计,将互感器卡装在电缆接头的接地线上,扣紧。 (注:在扣紧时注意闭合轻缓。在扣紧时可能会在开口处发生撞击而损坏 互感器,)

图9试验图

b、超声波法(采用 150K 磁吸附超声波传感器)

采用超声波法检测时,将 150KHz 超声波传感器通过一条同轴电缆接 在主机的通道 1 或者是通道 2 上打开主机面板上的电源开关,确保声电切 换开关切换到声的位置上。双击启动桌面局放在线巡检软件程序图标,进 入测量界面开始检测。

图 10 试验图

c、同步信号转换器使用说明

同步信号转换器作用是吧外同步信号输入一般为 **40-250V** 交流电源 转换为仪器使用电源 **TTL** 电平信号。用来作为仪器的同步信号,同步信号 转换器与仪器线路连接如下图所示:

图 11 同步信号转换器连接示意图

六、软件功能简介

1、检测功能

主界面功能: 开机后,点击可执行文件进入程序,程序界面如图 12 所示。在主菜单中有下面几种功能供选择:文件、设置、显示、退出等。

ವೆಟಿ					- 00
200 Electo ano del 200 1010 Alta 1010 - 200	ne auto				
11 10 10 10 10 10 10 10 10 10 10 10 10 1	no arcta	1			- III -
CruA CurB	Riddle Nation Think B	- IT -			
体: 0.0pC 全体	4: 0.0pC		10.0	 	1.0
2					
CreA CurB	取消光标 终电技术 干扰消除 数字				
体: 0.0pC 全体	: 0.0pC			 	
					48*,
6 HD - 1	and the second se				
				Distantia (D	

图 12

局放测试的基本操作:在建立试验记录文件后即进入主界面,试验的具体操作将在主界面中完成。

a、主界面工具栏,如图 13 所示。

	开始	暂停	保存	打开	存图	报告	定位
--	----	----	----	----	----	----	----

图 13 主界面工具栏

b、主界面有 2 个通道界面,每个通道都是独立的。其每个通道界面 如图 14 所示,

图 14 通道界面说明

c、通道工具栏如图 15 所示。

通道1									
160k 💌 5M	▼ 6 ▼ 里程加	里程减 自动	量程 CruA	CurB	取消光标 放电校准	干扰消除	数字滤波 🚺	▼ 1V	▼ 无信号处理器 ▼
会体	102022.000	$\Delta t = 0$	0nC						

图 15 通道工具

d、在通道界面中,单击右键菜单,会弹出一个菜单,可以对界面进行设置如图 16 所示是被设置为正弦波形。

Cond Cond <t< th=""><th>Rivale</th><th></th><th></th><th></th><th>- 00 X</th></t<>	Rivale				- 00 X
alla: CreA CurB 町石水16 900km 〒40000 100 10 0 10 0 10 0 10 0 10 0 10	74 9月 19月2日 AR 181 187 开始 香港 保存 打开 存開 操告				
CreA Curdit WERKNER PERSON REFORM REFOR	331				
全体: 441.0pC 全体: 0.0pC	CreA CerB #55%5 109/01	TRUMB 10-700 0			
	全体: 441.0pC 全体: 0.0pC				10
<					
3世2 3世2 全体: 5081.7pC 全体: 0.0pC 第二 (max Carel Wathing Weighter Fitcher Wirfschaft 「「」」」 会体: 5081.7pC 全体: 0.0pC 第二 (max Carel Wathing Weighter Fitcher Wirfschaft 「」」」 会体: 5081.7pC 全体: 0.0pC 第二 (max Carel Wathing Wirfschaft IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII					
2. 2010日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日					
all2 CruA CurB 版和N6 使用的单节版制度 版字编译 () () () () () () () () () () () () ()					
all2 Creat Card 地球地球 地球球球 () 、 「 「 、) 全体: 5081.7pC 全体: 0.0pC					
3個2 Cruck Cauld WRAME WHINE WF968 (*・1:F・) 全体: 5081.7pC 全体: 0.0pC					
Creat Crea Creat Creat <th< td=""><td>@#2</td><td>100 March 100 March 1</td><td></td><td></td><td>(co)iii a X</td></th<>	@#2	100 March 1			(co)iii a X
	CreA CarB 取扱法に 約用技術 3	FRUMAR REFIRM 0 • LF •			
	主体: 5061.7pC 主体: 0.0pC		15		
🗿 🥝 📇 👩 🔛 🧭	9 🙆 📇 🛛 🔛 🧭			- 9 7 (0.22)	0 0 0 0 0 0 0 00

图 16

显示方式: 可以选择基线的显示方式

统计分析: 具有指纹图分析功能和 3D 图分析功能。

设 置: 可以设置数字滤波等。

e、校准功能: 仪器在安装完成后每次试验前,都必须先进行校正, 只有这样才能获得准确的测试结果。

将校准脉冲发生器连接到被测试产品两端在当前通道界面中,点击放 电量校准按钮,弹出校准功能界面。

根据施加在被测试产品两端的已知电荷量,在"校正量"内输入需要 校准的 pC 值,即能以最大值为基准也能以窗口最大值为基准。

通道1 放电量	校准	23
- 方波校准		
校正里	400	校准方波
选择单位	pC 💌	退出

(应与校准脉冲发生器选择的数值相等,默认值:400pC)。 按[校准方波]按钮,校正自动进行。

校正完毕后应拆除校准脉冲发生器,准备正式测试。

可以根据现场的实际情况,在校准的过程中,有选择的进行如下操作,以 便使校准更加准确。

f、调挡及滤波功能使用方法

根据显示点击[量程加]、[量程减]按钮对增益档位进行调节,若在显示的数值变红,则表示超出量程。选择合适的低频和高频滤波档位,滤除明显干扰信号。如非必要,应尽量避免滤波档位的改动。

如果有干扰信号可以适当选择数字滤波频带。方法是:在次数框内输入希望的数字滤波次数(默认1次),使数字滤波效果更好,但次数多可能影响速度。数字滤波在滤出干扰的同时可能使信号过小,此时在倍率框内输入希望的倍率将信号放大且不超值为益。

设置数字滤波有效后,应重新校准通道。

g、程序运行

校正完毕及档位和滤波频带设置完成后,即可进入测试阶段。 软件自动进入测量状态。此时在波形显示区应该可以观察到不规则噪

波和较稳定的背景波形;如未拆除校准脉冲发生器,则在最后校准通道的 波形显示区将出现均匀规则的波形,此时,拆除校准脉冲发生器连接好待 测试产品后,即可进行正常测试。

若有局部放电出现,屏幕左侧的窗口出现局部放电波形,同时在图形 窗口上方显示本通道的局部放电量峰值。若没有局部放电出现,屏幕左侧 窗口出现的是不规则的噪波和相对稳定的背景波形,在图形窗口上方显示 本通道的背景值。

在运行过程中,可根据需要,随时选用菜单上的功能:

如果要结束测量,只需按下主画面[退出]按钮。

2、高级功能

a、参数设置:参数设置保存上次试验的设置,如非必要,请不要改动。

点击主菜单[设置]里的[系统设置]中的[参数设置]选项,弹出以下菜单参数设置主要包括:

触发源:通道1、2、3、4和数字三种,默认数字方式。

触发电平:通道1、2、3、4 触发方式的触发值。

同步选择:包含内同步、外同步两种选择(默认:内同步)。

同步频率(Hz):自动识别。

干扰处理设置:选择天线通道和极性基准通道。

自动换挡:设置自动换挡参数。

b、点击主菜单[设置]里的[系统设置]中的[通道属性设置]选项,弹出以 下菜单,设置完成后,通道界面会有相应的显示,提示用户通道属性。

c、点击工具栏显示窗口,可以选择一、二窗口显示,窗口显示界面

如图 17。

max desir 1151	8-10 akti			- 10
1				1
(t. 441 0nC	Cerll 服活光标 股积的准于机活动 会体。0.0mC	NF200日 0 - 17 -		
μ41.0pC	王(本) 0.0pC		¥	 20. 20.
				 S.
2				
e Cruit c	wB 服務发标 改电放单 干扰消除	NF88 • IT •		
2 Great C 4: 5081.7pC 2		N788		
CreA C 4: 5081.7pC		N7448 - 17 -		
CreA C	CerB 1008/06 8/900年 千机石除 全体: 0.0pC	R9448 • IT •		
CreA C	CwB 取消光标 @明th和 干机消除 全体: 0.0pC	R744 1 - 17 -		
CreA C	CarB	R742 • • •		
e CreA C 4: 5081.7pC 3	CarB	RFXX I TT		
CreA C	CarB			

图 17 八窗口显示界

d、点击主菜单[设置]里的[颜色设置]选项,弹出以下菜单如图 18,可以配置窗口的配景色和波形线条颜色。

背景色设置	曲线颜色设置
通道1	通道2
通道3	通道4
通道5	通道6
通道7	通道8
默认值	确定 取消

图 18 配色方案设置界面

e、波形暂停:在运行时,波形刷新过快而无法观察时,可按[暂停]按钮,使波形暂时停止刷新以便准确定位,进行精确的详察波形和频谱分析。 波形暂停时,可进行部分参数设置:改变工作方式、旋转角度、改变显示方式光标分析等。

f、开关相位窗:每一个通道的图形显示窗口内,可以同时开5个不同时刻的子窗口(相位窗)。开窗技术,主要用于观察局部视在放电量的测量。

开相位窗操作:

将鼠标的光标放置在图形显示区的适当位置,按下鼠标左键,在保持按下的同时拖动鼠标到另一位置释放鼠标左键,可以形成框住基线的红色矩形框,即完成开窗操作。在同一通道的图形显示区,最多显示5个相位窗, 重复以上操作。有相位窗时,显示的是5个相位窗口内的最大放电量。 关闭相位窗操作:

需要关闭哪一个相位窗口,就将鼠标的光标放置在那一个相位窗(红 色矩形框)内,单击鼠标左键,即可关闭该窗口。在存在5个相位窗口的 情况下,进行开窗操作可以关闭第一个相位窗口。

g、频谱分析:在波形展开界面的工具栏中点击[频谱],就会进入频谱 分析窗口,如图 19 所示,可以分析窗口内含量最多的波形的频率。标尺 功能用来测量峰值频率,频谱展开可以扩展 1 倍频谱图,频谱缩小可以缩 小 1 倍频谱图。点击频域消干扰 2 按钮,可以消除三个频段的信号。此功 能可以消除除局放信号的干扰信号。

h、指纹图分析:在通道窗口区域内鼠标右键点击,选择[统计分析]里的[指纹图]选项,会弹出以下界面,如图 20 所示。

定位波形图画面同时显示 2 个信号波形图。需要对某个图形进行操作 时,可以点击其中一个图形,图中矩形框所标注的位置会显示所选的通道 名称,其中菜单栏为 量程加,量程减,量程自调,开始,暂停,手动定 位,触发值,触发源,校准。监测到放电信号时波形图中会显示出放电 脉冲波形,出现放电波形后,软件会自动捕捉到该放电信号,并计算出放 电位置同时在右侧用三维,二维图显示出监测到的放电点位置。

七、常见问题处理

序号	问题	解决方法	备注
1	开机后波形静 止,不采集信号	检查是否点击暂停按钮; 检查是否打开开关电源; 检查设置菜单中是否将触发源设置 为软件触发。	
2	高频电流互感器 信号没有或微弱	检查电缆是否接插完好; 检查互感器是否扣紧; 检查方波发生器是否开机。	
3	主机电源指示灯 不亮	1、将主机充电器接好,查看指示灯 是否亮,若不亮,请联系厂家。	

Ξ